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a b s t r a c t

This paper presents a new study on adaptive state feedback output tracking control problem for
uncertain discrete-time nonlinear systems in a general non-canonical form. Time-advance operations
on the output of such systems result in the output dynamics being nonlinearly dependent on the
control input and unknown parameters, which leads to three technical issues: implicit relative degree;
nonlinearly parameterized uncertainties; and non-affine control input. To address these issues, this
paper first employs feedback linearization and implicit function theory to construct a relative degree
dependent normal form; then proposes an adaptive parametric reconstruction based method to
simultaneously deal with linearly and nonlinearly parameterized uncertainties in the output dynamics;
and finally constructs a key implicit function equation to derive a unique adaptive control law which
ensures closed-loop stability and asymptotic output tracking. An explicitly iterative solution based
adaptive control law is also proposed to ensure closed-loop stability and bounded output tracking
within any degree of accuracy. The simulation verifies the effectiveness of the proposed adaptive
control method.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Adaptive control is a powerful technique to deal with un-
nown parameters in control systems. Adaptive control design
nd analysis have been extensively studied. For example, Astolfi
t al. (2008), Ioannou and Sun (2012), Krstic et al. (1995), Lan-
au et al. (2011), Lavretsky and Wise (2013), Narendra and An-
aswamy (1989), Sastry and Bodson (1989), Spooner et al. (2004),
ao (2003) and Zhou and Wen (2008), are some monographs
ddressing adaptive control of continuous-time (CT) and discrete-
ime (DT) control systems. Particularly, Sastry and Bodson (1989)
s the first monograph on adaptive control of non-canonical form
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CT nonlinear systems with linearly parameterized uncertainties
by using the feedback linearization technique; and Krstic et al.
(1995) is the first monograph which systematically addressed
adaptive control of strict-feedback form CT nonlinear systems.
Adaptive control is also well developed for stochastic systems, for
instance, Chen and Guo (2012), Goodwin and Sin (1984), Jiang and
Xie (2021), Li, Deng, and Zhao (2019), Liu et al. (2007) and Zhao
et al. (2015). There are too many remarkable results to list them
all.

Most of the existing adaptive control methods are focused
on canonical-form nonlinear systems which have explicit rel-
ative degrees and infinite zero structures, for instance, Bech-
lioulis and Rovithakis (2010), Chen et al. (2015), Fu et al. (2020),
Krstic and Bement (2006), Lei et al. (2019), Li, Zhao, He, and
Lu (2019), Lin and Qian (2001), Liu and Tong (2017), Niu et al.
(2018), Sun et al. (2017), Wang et al. (2017, 2020, 2018), Xu
et al. (2017), Yang et al. (2017) and Yu et al. (2021). How-
ever, many practical applications, such as aircraft flight control
systems, their system dynamics structures are generally of non-
canonical forms (Tao, 2014). Thus, it is of great importance to
develop adaptive control algorithms to effectively and adaptively
control such systems. Up to now, there have been several results
to address adaptive output tracking problems for non-canonical
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orm nonlinear systems. For instance, Sastry and Isidori (1989) es-
ablished an adaptive output tracking control framework for non-
anonical form CT nonlinear systems with linearly parameterized
ncertainties. In recent years, adaptive control problems for non-
anonical form CT nonlinear systems with unparameterizable
ncertainties were also studied, using function approximation
echniques (see, e.g., Zhang et al., 2019). By contrast, adaptive
ontrol of non-canonical form DT nonlinear systems with lin-
arly parameterized uncertainties is seldom addressed, although
eedback linearization of non-canonical DT nonlinear systems has
een early addressed in Monaco and Normand-Cyrot (1987).
Note that the adaptive control methods for CT systems cannot

e extended to DT systems due to essentially different properties
nduced by feedback linearization. As shown in Sastry and Isidori
1989), feedback linearization of non-canonical form CT nonlinear
ystems can define explicit relative degrees and the derived out-
ut dynamics linearly depends on the input and can be linearly
arameterized. However, as will be shown in Section 2, feed-
ack linearization of non-canonical form DT nonlinear systems
an only define implicit relative degrees and the derived output
ynamics has new features: nonlinear dependence on system
arameters and the input. In other words, the adaptive con-
rol problem faces new technical issues: implicit relative degree;
onlinearly parameterized uncertainties; and non-affine control
nput. As early as 1989, in Sastry and Isidori (1989), the authors
ave pointed out these issues. However, up to now, there are still
o valid results to solve the adaptive control of non-canonical
orm DT nonlinear systems.

In this paper, we will develop an implicit function based
olution to the adaptive control problem of general non-canonical
T nonlinear systems. The main contributions are summarized as
ollows.

• It establishes an implicit function based adaptive control
framework which solves the new technical issues in adap-
tive control of non-canonical form DT nonlinear systems:
implicit relative degrees, non-affine control input, and non-
linearly parameterized uncertainties, and achieves desired
system performance. The above three issues have not ever
been simultaneously addressed in the literature.

• It proposes an adaptive parametric reconstruction based
method which effectively deals with all unknown param-
eters including linearly and nonlinearly parameterized un-
certainties in the output dynamics.

• It derives a unique adaptive control law from an implicit
function equation, which ensures closed-loop stability and
asymptotic output tracking for the controlled plant. The
uniqueness of the adaptive control law is addressed in this
paper, which is seldom discussed in the literature of adap-
tive control.

• It constructs an explicitly iterative solution based adaptive
control law which is easy to be implemented in practice and
can be used for the case when the analytical adaptive control
law is difficult to obtain.

he rest of this paper is organized as follows. Section 2 gives
he controlled plant and technical issues. Section 3 discusses the
elative degree issue for the controlled plant. Section 4 presents
nominal control framework to show some fundamentals. Sec-

ion 5 shows the adaptive control design details. Sections 6 and 7
ive the simulation study and concluding remarks, respectively.

. Problem statement

In this section, we give the system model and clarify the
echnical issues to be solved.
 p

2

2.1. System model

Consider the following DT nonlinear system:

x(t + 1) = f (x(t)) + g(x(t))u(t), y(t) = Cx(t), (1)

where t ∈ {0, 1, 2, . . .}; x(t) = [x1(t), x2(t) . . . , xn(t)]T ∈ Rn

is the state vector, u(t) ∈ R is the control input, and y(t) ∈

R is the system output; CT
= [c1, c2, . . . , cn]T ∈ Rn is an

unknown constant parameter vector; and f : Rn
→ Rn and

g : Rn
→ Rn are sufficiently smooth and nonlinear mappings

of the forms f (x(t)) = [f1(x(t)), f2(x(t)), . . . , fn(x(t))]T , g(x(t)) =

[g1(x(t)), g2(x(t)), . . . , gn(x(t))]T . Moreover,

fi(x(t)) =

pi∑
j=1

θ1ij
∗
fij(x(t)), gi(x(t)) =

qi∑
j=1

θ2ij
∗
gij(x(t)) (2)

for some known positive integers pi and qi, where θ1ij
∗

∈ R and
θ2ij

∗
∈ R are unknown constant parameters; and fij : Rn

→ R and
gij : Rn

→ R are known and nonlinear mappings with fij(0) = 0.
In this paper, the system state is assumed to be measurable.

2.2. Technical issues to be solved

The control objective is to develop an adaptive state feedback
control scheme to ensure closed-loop stability and asymptotic
output tracking for the non-canonical form DT nonlinear system
(1).

Since (1) is in a non-canonical form, it is not suitable for adap-
tive control design, and needs to be reconstructed in prior. The
powerful feedback linearization technique is a natural choice to
reconstruct the non-canonical system dynamics. Now, we show
that, after a feedback linearization based reconstruction, the sys-
tem dynamics will involve the issues of nonlinear parametriza-
tion and the control input in a non-affine form.

According to the relative degrees of DT nonlinear systems
defined in Monaco and Normand-Cyrot (1987), if the system (1)
has relative degree 1 on Rn, then

y(t + 1) =

n∑
i=1

pi∑
j=1

ciθ1ij
∗
fij(x(t)) +

n∑
i=1

qi∑
j=1

ciθ2ij
∗
gij(x(t))u(t) (3)

with
∑n

i=1
∑qi

j=1 ciθ
2
ij

∗gij(x) ̸= 0,∀x ∈ Rn. If the system (1) has
relative degree 2 on Rn, then y(t + 1) =

∑n
i=1
∑pi

j=1 ciθ
1
ij

∗fij(x(t))
and

y(t + 2) =

n∑
i=1

pi∑
j=1

ciθ1ij
∗
fij(x(t + 1)) (4)

or x(t + 1) = [x1(t + 1), x2(t + 1), . . . , xn(t + 1)]T with

i(t + 1) =

pi∑
j=1

θ1ij
∗
fij(x(t)) +

qi∑
j=1

θ2ij
∗
gij(x(t))u(t) (5)

such that
∑n

i=1
∑pi

j=1
∑n

k=1
∑qk

l=1 ciθ
1
ij

∗
θ2kl

∗ ∂ fij(x(t+1))
∂xk(t+1) gkl ̸= 0. Note

that fij are nonlinear mappings. In addition to (4) and (5), θ1ij
∗, θ2ij

∗

and u(t) nonlinearly exist in y(t + 2). Such a characteristic brings
two difficulties for adaptive control design: how to handle the
unknown parameters in y(t + 2); and how to derive an effective
adaptive control law to achieve desired system performance.

Canonical-form DT nonlinear systems are generally of the
basic form xi(t+1) = fi(x̄i)+gi(x̄i)xi+1, xn(t+1) = fn(x̄n)+gn(x̄n)u,

= x1, where i = 1, 2, . . . , n − 1, x̄j = [x1, x2, . . . , xj]T ∈ Rj,
hich have explicitly certain relative degrees, and the adaptive
ontrol problem can be solved based on the adaptive backstep-
ing technique (Krstic et al., 1995). However, non-canonical form
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T nonlinear systems do not fulfill the canonical-form matching
ondition. On the other hand, as clarified in Introduction, the
ontrol methods for CT systems are also not applicable to the new
ontrol problem addressed in this paper.
In summary, we conclude that adaptive control of non-

anonical form DT nonlinear systems is still open for study.
o meet the control objective, we need to solve the following
echnical issues:

• how to handle linearly and nonlinearly parameterized un-
certainties in the output dynamics of the system (1) with
high-order relative degree;

• how to develop an analytical adaptive state feedback control
law for the system (1) to achieve closed-loop stability and
asymptotic output tracking; and

• how to develop an iterative solution based adaptive control
law for the system (1) to achieve closed-loop stability and
bounded output tracking with an arbitrary degree of accu-
racy for the case when the analytical adaptive control law is
difficult to obtain.

. Relative degrees and normal form

This section discusses relative degrees and normal form of the
ystem (1). A design condition for tracking control is made on the
ormal form.

.1. Relative degrees of DT nonlinear systems

Introduce ◦ to denote a composition operation, that is, p1 ◦ p2
denotes that p1 is a function of p2 for any functions p1 and p2 of
appropriate dimensions. Define

Fi(x(t), u(t)) =

pi∑
j=1

θ1ij
∗
fij(x(t)) +

qi∑
j=1

θ2ij
∗
gij(x(t))u(t),

which implies Fi(x, 0) =
∑pi

j=1 θ
1
ij

∗fij(x). Let F (x, u) = [F1(x, u),
. . . , Fn(x, u)]T , F0(x) = [F1(x, 0), . . . , Fn(x, 0)]T . Then, for any inte-
ger k > 0, F k

0 ◦F (x, u) = F0(F k−1
0 ◦F (x, u)) and F 0

0 ◦F (x, u) = F (x, u).
Now, we specify a general relative degree for the system (1) as
follows.

Lemma 1. The system (1) has relative degree ρ (1 ≤ ρ ≤ n) on
Rn

× R, if, for k = 0, 1, . . . , ρ − 2, ∀(x, u) ∈ Rn
× R,

C
∂F k

0 ◦ F (x, u)
∂u

= 0, C
∂Fρ−1

0 ◦ F (x, u)
∂u

̸= 0.

he proof of this lemma can be obtained based on the relative
egree definition of DT nonlinear systems developed in Monaco
nd Normand-Cyrot (1987), so we omit it. Next, based on the
elative degree information, we construct a normal form for the
ystem (1).

emark 2. The relative degree of DT systems has the following
hysical explanation. In real control systems, the time delay gen-
rally occurs between the input and output. The relative degree
f DT systems is actually the input–output time delay. Eq. (8)
escribes the exact time delay between u(t) and y(t). Specifically,
hen a non-zero input is applied to the system at the time instant
, the output has no response at the instants t+1, t+2, . . . , t+ρ−

, but has response at the instant t +ρ. The relative degree (time
elay) information is crucial for adaptive control design (Goodwin
Sin, 1984; Ioannou & Sun, 2012; Narendra & Annaswamy, 1989;
ao, 2003). □
3

3.2. Normal form of DT nonlinear systems

Now, we give the following result to specify a relative degree
dependent normal form for the system (1).

Lemma 3. If the system (1) has relative degree ρ for all (x, u) ∈

Rn
× R, via a diffeomorphism T (x(t)) = [ξ T (t), ηT (t)]T with ξ (t) =

ξ1(t), ξ2(t), . . . , ξρ(t)]T ∈ Rρ and η(t) ∈ Rn−ρ , the system (1) can
e transformed into two subsystems: the output dynamics

ξi(t + 1) = ξi+1(t), i = 1, . . . , ρ − 1,

ρ(t + 1) = CFρ−1
0 ◦ F (x(t), u(t)) (6)

ith ξ1(t) = y(t) such that C ∂Fρ−1
0 ◦F (x,u)
∂u ̸= 0, ∀(x, u) ∈ Rn

×R, and
he internal dynamics

(t + 1) = q(ξ (t), η(t), u(t)), (7)

here q : Rρ × Rn−ρ
× R → Rn−ρ is a smooth mapping.

The proof of this lemma is similar to that of CT system case,
nd the readers may refer to Isidori (1995) for study. We do not
rovide the details for simplicity. Based on Lemma 3, we have

(t + ρ) = CFρ−1
0 ◦ F (x(t), u(t)) (8)

hich will be used for adaptive control design. For stable output
racking control, we need a design condition on the internal
ynamics (7), which is specified as follows.

.3. Input-to-state stable (ISS) condition

For state feedback output tracking control design, the input is
enerically designed as u(t) = u(x(t), v(t)) = u(T−1(ξ (t), η(t)),
(t)), where v ∈ R is bounded and independent of x. Therefore,
7) is rewritten as

(t + 1) = Q (ξ (t), η(t), v(t)), (9)

here Q : Rρ × Rn−ρ
× R → Rn−ρ is a smooth mapping. Then,

e make the following assumption.

ssumption 1. The dynamic system η(t + 1) = Q (0, η(t), 0) is
xponentially stable, and Q (ξ (t), η(t), v(t)) is globally Lipschitz
ith respect to ξ (t) and v(t).

Under Assumption 1, from (9), one can verify that, if ξ and v
re bounded, η is bounded. For adaptive output tracking control
f nonlinear systems covering CT and DT, the ISS design condition
s essential (for instance, Chen and Khalil 1995 and Ge and Zhang
003). There are many applications whose internal dynamics are
SS, such as the NASA Generic Transport Model shown in Guo
t al. (2011). The ISS design condition can be seen as an extension
f the fundamental condition that requires the zeros of the trans-
er function are stable for adaptive control of linear time-invariant
ystems.

. Nominal control framework

Before proceeding adaptive control design, we present a nom-
nal control framework, assuming all system parameters were
nown, to show some fundamentals.
Note that the relative degree condition in Lemma 1 ensures

∂Fρ−1
0 ◦F (x,u)
∂u ̸= 0 for any finite x and u. Adaptive control design

urther requires that C ∂Fρ−1
0 ◦F (x,u)
∂u is non-zero when x and u go to

infinity. Thus, we make the following assumption.
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ssumption 2. There exists some constant ε such that

C ∂Fρ−1
0 ◦F (x,u)
∂u | ≥ ε > 0, ∀(x, u) ∈ Rn

× R, and the sign of
∂Fρ−1

0 ◦F (x,u)
∂u is known.

emark 4. The condition |C ∂Fρ−1
0 ◦F (x,u)
∂u | ≥ ε can be seen as a

odified relative degree condition. The sign of C ∂Fρ−1
0 ◦F (x,u)
∂u to be

nown means the control direction is known. Without loss of
enerality, we assume that the sign is positive. Nussbaum and
ultiple-model techniques are often used to relax the control
ain sign condition (Chen et al., 2019; Ge & Wang, 2003). □

utput dynamics. For the system (1) with relative degree ρ on
n
× R, it follows from (6) and (8) that the output dynamics can

e expressed as

(t + ρ) = CFρ−1
0 ◦ F (x(t), u(t)). (10)

mplicit function. Introduce an implicit function as

(x(t), u(t), ym(t + ρ)) = CFρ−1
0 ◦ F (x(t), u(t)) − ym(t + ρ), (11)

where ym(t + ρ) is ρ-step time advance of a given reference
output. Based on the implicit function definition (Krantz & Parks,
2002), to ensure that ϕ(x, u, ym) in (11) is a well-defined implicit
function of u, the signal ym needs to satisfy that ym belongs to the
range of CFρ−1

0 ◦ F (x, u) for all t = 0, 1, 2, . . ..
Motivated by the implicit function result (Zhang & Ge, 2006),

we derive the following result which specifies an implicit function
based nominal control framework.

Theorem 5. Under Assumptions 1–2, if the system (1) has relative
degree ρ for all (x, u) ∈ Rn

×R, there exists a unique state feedback
control law that ensures closed-loop stability and output tracking
y(t + ρ) = ym(t + ρ).

Proof. We first show that there exists a unique solution u to the
following equation

CFρ−1
0 ◦ F (x(t), u) − ym(t + ρ) = 0. (12)

Under Assumption 2, fixing x(t) and ym(t + ρ), for all u ∈ R,
there exists a bounded signal denoted as κ(t) such that κ(t) =

nfu∈R
{
∂ϕ(x(t),u,ym(t+ρ))

∂u

}
> 0. Let

c(t) = ϕ(x(t), u, ym(t + ρ))|u=0. (13)

f c(t) = 0, then u = 0 is the solution. Otherwise, consider a
compact set defined as Ωt = {u||u| ≤ |c(t)|/κ(t)}. Now, due
to the continuity of ∂ϕ(x(t),u,ym(t+ρ))

∂u , fixing x(t) and ym(t + ρ),
e conclude that ∂ϕ(x(t),u,ym(t+ρ))

∂u has a maximum value for all
∈ Ωt . In other words, fixing x(t) and ym(t + ρ), there exists a

bounded signal depending on t , denoted as κ̄(t), such that κ̄(t) =

maxu∈Ωt

{
∂ϕ(x(t),u,ym(t+ρ))

∂u

}
> 0. Introduce a mapping ft : Ωt → R

defined as

ft (u) = u −
1
γ (t)

ϕ(x(t), u, ym(t + ρ)),

here γ (t) is a design parameter depending on t such that γ (t) >
¯ (t). For any u ∈ Ωt , it follows from Mean Value Theorem that

(x(t), u, ym(t + ρ)) = c(t) + u
∂ϕ(x(t), u, ym(t + ρ))

|u=σ1 , (14)

∂u y

4

where σ1 is a value depending on t such that |σ1| < |u|. Thus,
(13)–(14) yield

|ft (u)|

=

⏐⏐⏐⏐u −
1
γ (t)

(
c(t) + u

∂ϕ(x(t), u, ym(t + ρ))
∂u

|u=σ1

)⏐⏐⏐⏐
≤

⏐⏐⏐⏐1 −
1
γ (t)

∂ϕ(x(t), u, ym(t + ρ))
∂u

|u=σ1

⏐⏐⏐⏐ |u| +
|c(t)|
γ (t)

.

Since u, σ1 ∈ Ωt , with γ (t) > κ̄(t) ≥ κ(t), we derive that
|ft (u)| ≤

|c(t)|
γ (t) +

(
1 −

κ(t)
γ (t)

)
|c(t)|
κ(t) =

|c(t)|
κ(t) which implies that ft maps

Ωt into itself. In addition, for any u1, u2 ∈ Ωt , we have

|ft (u1) − ft (u2)| = |u1 − u2 −
1
γ (t)

(ϕ|u=u1−ϕ|u=u2 )|

which follows from Mean Value Theorem that

|ft (u1) − ft (u2)| ≤

⏐⏐⏐⏐1 −
1
γ (t)

∂ϕ

∂u
|u=σ2

⏐⏐⏐⏐ |u1 − u2|

≤

(
1 −

κ(t)
γ (t)

)
|u1 − u2|, (15)

here σ2 is some value between u1 and u2. From (15), we see
hat ft is a contraction mapping. Then, it follows from Banach’s
ixed Point Theorem that there exists a unique solution denoted
s u∗

t to the equation ft (u) = u, that is, u∗
t −

1
γ (t)ϕ(x(t), u

∗
t , ym(t +

)) = u∗
t , which implies that u∗

t is the unique solution to
(x(t), u, ym(t + ρ)) = 0. Then, from (11), we derive that u∗

t
s the unique solution to Eq. (12). If u∗

t is set as the control
aw, then Eq. (12) always holds. In addition to (10), we obtain
(t + ρ) − ym(t + ρ) = 0.
Since ym(t) ∈ L∞, we have ξ (t) = [y(t), y(t +1), . . . , y(t +ρ−

)]T ∈ L∞. Under Assumption 1, the boundedness of ξ (t) implies
hat of η(t), which follows from the diffeomorphism T (x) =

ξ T , ηT ]T that x ∈ L∞. As u∗
t belongs to Ωt , we obtain the control

aw is also bounded. Thus, all closed-loop signals are bounded.

Theorem 5 provides a basic nominal control scheme. To derive
he nominal control law, a feasible way, in practice, is to solve
12) so as to get a solution u(t). As u(t) nonlinearly exists in
12), it may be difficult to obtain. Alternatively, we can design a
equence {ui(t)}: ui(t) = ui−1(t) −

1
γ (t)ϕ(x(t), u(t − 1), ym(t + ρ)),

= 1, 2, . . ., with u0(t) = u(t − 1), where u(t − 1) denotes the
ontrol law at the instant t−1. Following a similar analysis in the
roof of Theorem 5, one can verify that {ui(t)} is convergent to u∗

t
or all t ≥ 1. Thus, one can use an iterative solution based control
aw to ensure bounded output tracking. We do not provide the
etails for space.

. Adaptive control designs

In this section, we first present a brief adaptive control frame-
ork for the system (1) with ρ = 1. Then, we extensively address
he adaptive control design for the system (1) with ρ = 2. Finally,
e illustrate the ρ = 3 case to demonstrate the control design

or the ρ = 2 case can be extended to any higher-order relative
egree case.

.1. Adaptive control design for systems with ρ = 1

Adaptive control design for the system (1) with ρ = 1 has the
ollowing details.
arameterized model. For the system (1) with ρ = 1, from (3),
parameterized model for (3) is derived as

(t + 1) = θ1
∗T
ω (t) + θ2

∗T
ω (t)u(t), (16)
1 2
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here θ1∗
∈ R

∑n
i=1 pi and θ2∗

∈ R
∑n

i=1 qi are unknown constant
vectors, ω1 ∈ R

∑n
i=1 pi and ω2 ∈ R

∑n
i=1 qi are known time-varying

regressor vectors, and

θ1
∗

= [c1θ111
∗
, . . . , c1θ11p1

∗
, . . . , cnθ1n1

∗
, . . . , cnθ1npn

∗
]
T ,

θ2
∗

= [c1θ211
∗
, . . . , c1θ21q1

∗
, . . . , cnθ2n1

∗
, . . . , cnθ2nqn

∗
]
T ,

ω1(t) = [f11(x(t)), . . . , f1p1 (x(t)), . . . , fn1(x(t)), . . . , fnpn (x(t))]
T ,

ω2(t) = [g11(x(t)), . . . , g1q1 (x(t)), . . . , gn1(x(t)), . . . , gnqn (x(t))]
T .

Adaptive control law. The adaptive law is designed as

u(t) =
1

θ2
T (t)ω2(t)

(−θ1
T
(t)ω1(t) + ym(t + 1)), (17)

where θ1(t) and θ2(t) are estimates of θ1∗ and θ2∗, respectively.
Note that ym(t) is a given reference output and ym(t + 1) is
available at the current time instant.
Tracking error equation. Define the tracking error as e(t) =

(t) − ym(t). Then, substituting the adaptive control law (17) to
(16) yields e(t + 1) = −θ̃ T (t)ω(t), where θ̃ (t) = θ (t) − θ∗

with θ (t) = [θ1
T (t), θ2T (t)]T and θ∗

= [θ1
∗T
, θ2

∗T
]
T , and ω(t) =

[ωT
1 (t), ω

T
2 (t)]

T .
Adaptive update law. Define an estimation error ϵ(t) = e(t) −

σ (t) with σ (t) = θ T (t)ω(t − 1) − θ T (t − 1)ω(t − 1). The adaptive
update law is designed as

θ (t + 1) = θ (t) +
Γ ϵ(t)ω(t − 1)

m2(t)
, θ (0) = θ0, (18)

where Γ = diag{γ1, . . . , γ∑n
i=1(pi+qi)} is an adaptation gain matrix

with γi ∈ (0, 2), θ0 is an initial estimate of θ∗, and m(t) =√
1 + ωT (t − 1)ω(t − 1) + σ 2(t). To ensure a well-defined adap-

tive control law, θ2(t) needs to be constrained to avoid θ2T (t)
ω2(t) = 0. A parameter projection is capable of handling this
issue. One may refer to Cougnon et al. (2011), Tao (2003), and
related literature. We do not provide the details.

Now, we give the following result:

Theorem 6. Under Assumptions 1–2, the adaptive law (17) with
the update law (18), applied to the system (1) with ρ = 1 and
unknown C, θ1ij

∗
, θ2ij

∗
, i = 1, 2, . . . , n; j = 1, 2, . . . , pi(qi), ensures

closed-loop stability and asymptotic output tracking: limt→∞(y(t)−
ym(t)) = 0.

The proof of this theorem can be performed based on the
stability analysis in Section 7.3 of the book (Tao, 2003). Here, we
do not provide the details. This theorem reveals that adaptive
control for the system with relative degree one can be solved by
using a standard linear parametrization based formulation.
Extension to canonical-form DT systems with a general rel-
ative degree. In this part, we show that the adaptive control
method for the ρ = 1 case is applicable to adaptive control
of canonical-form DT nonlinear systems with a general relative
degree.

Consider a canonical-form DT nonlinear system:

ξi(t + 1) = ξi+1(t), i = 1, 2, . . . , ρ − 1, (19)
ξρ(t + 1) = f (ξ (t), η(t)) + g(ξ (t), η(t))u(t), (20)

η(t + 1) = q(ξ (t), η(t), u(t)), (21)
y(t) = ξ1(t), (22)

where the state vector is [ξ T (t), ηT (t)]T ∈ Rn with η(t) ∈ Rn−ρ

and ξ (t) = [ξ1(t), ξ2(t), . . . , ξρ(t)]T ∈ Rρ , u(t) ∈ R is the input,
y(t) ∈ R is the output; and f ∈ R, g ∈ R, q ∈ Rn−ρ are
smooth functions with linearly parameterized uncertainties such
that g ≥ ε for some constant ε > 0. We assume that the state
is measurable; and an ISS condition, similar to Assumption 1,
 s

5

is made on the internal dynamics (21). Note that the system
(19)–(22) is of a canonical-form with a general relative degree
ρ.

Now, imitating the adaptive control design for the system (1)
with ρ = 1, we give an outline of adaptive control design for the
canonical-form system (19)–(22).
Step 1: Parametrization of output dynamics. Following the design
procedure of the relative degree one case, a parameterized model
of the output dynamics (19) should be first derived, which can be
expressed as

y(t + ρ) = θ1ρ
∗T
ωρ1(t) + θ2ρ

∗T
ωρ2(t)u(t),

where θ1ρ
∗ and θ2ρ

∗ are unknown constant vectors and ωρ1(t) and
ωρ2(t) are known time-varying regressor vectors all of appropri-
ate dimensions.
Step 2: Specification of adaptive control law. Imitating (17), the
adaptive control law for the system (19)–(21) has the following
structure:

u(t) =
1

θ2ρ
T (t)ωρ2(t)

(−θ1ρ
T
(t)ωρ1(t) + ym(t + ρ)), (23)

here θ iρ(t), i = 1, 2, are estimates of θ i∗, and ym(t +ρ) is ρ-step
time advance of a given reference output ym(t).
tep 3: Derivation of tracking error equation. Substituting (18) to
(8) derives a tracking error equation as

eρ(t + 1) = −θ̃ Tρ (t)ωρ(t), (24)

here θ̃ρ(t) = θρ(t) − θ∗
ρ with θρ(t) = [θ1ρ

T (t), θ2ρ
T (t)]T and

θ∗
ρ = [θ1ρ

∗T
, θ2ρ

∗T
]
T , and ωρ(t) = [ωT

ρ1(t), ω
T
ρ2(t)]

T .
With the adaptive control law (23) and the tracking error

odel (24), we can derive the parameter update law similar to
18), and finally prove that the adaptive control law (23) can
nsure closed-loop stability and asymptotic output tracking for
he system (19)–(22). The stability analysis is similar to that in
ection 7.3 of the book Tao (2003). Here, we do not provide the
etails.
So far, we have shown that the adaptive control problem for

he system (1) with ρ = 1 can be solved based on a standard
daptive control framework, and shown that the method is ap-
licable to canonical-form DT nonlinear systems with a general
elative degree. However, for the system (1) with ρ > 1, the
daptive control design is quite different from that of the ρ = 1
ase, which will be shown subsequently.

.2. Adaptive control design for systems with ρ = 2

As clarified in Sections 1 and 2, adaptive control for the ρ > 1
ase involves nonlinear parametrization and non-affine control
nput, which cannot be solved by the existing control methods
nd needs systematic study. In this section, we will design an
mplicit function equation based adaptive control law to ensure
table output tracking under some additional conditions on the
appings fij and gij in (2).
For fij and gij in (2), we make the following assumption.

ssumption 3. (a) fij are globally Lipschitz; and (b) gij ∈ L∞;
= 1, . . . , n, j = 1, . . . , pi(qi).

Assumption 3(a) is a common Lipschitz condition. Similar
ipschitz conditions are often used in the literature, e.g., Ge
nd Zhang (2003) and Sastry and Isidori (1989) for CT system
ase; and Beikzadeh and Marquez (2016) and Nguyen and Trinh
2016) for DT system case. Assumption 3(b) means the control
oefficient in the system dynamics is bounded, which is rea-

onable for many applications, for instance, robot manipulator
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odel (Lewis et al., 1993), rapid thermal processing (RTP) system
odel (Emami-Naeini et al., 2003), etc.
n outline. To deal with the unknown parameters in y(t + 2),
e will propose an adaptive parametric reconstruction based
ethod. The specific steps are (i) two auxiliary signals are intro-
uced, which are available and can be linearly parameterized; (ii)
he modified gradient algorithms are employed to derive some
stimates of the unknown parameters in the parametrizations of
uxiliary signals; and (iii) the derived estimates are the indirect
stimates of the unknown parameters in y(t+2). We then need to
onstruct estimates of several future time signals, which, together
ith parameter estimates, are used to construct a key implicit

unction equation. Finally, the adaptive control law can be derived
rom solving the implicit function equation. The details are as
ollows.
utput dynamics. If the system (1) has relative degree two for
x, u) ∈ Rn

× R, the output dynamics is

(t + 2) =

n∑
i=1

pi∑
j=1

ciθ1ij
∗
fij(x(t + 1)) (25)

uch that
∑n

i=1
∑pi

j=1
∑n

k=1
∑qk

l=1 ciθ
1
ij

∗
θ2kl

∗ ∂ fij(x(t+1))
∂xk(t+1) gkl ≥ ε. De-

fine θ∗
y ∈ R

∑n
i pi , Θ∗

x ∈ Rn×
∑n

i=1(pi+qi) of the forms θ∗
y =

[c1θ111
∗
, . . . , c1θ11p1

∗
, . . . , cnθ1n1

∗
, . . . , cnθ1npn

∗
]
T and

Θ∗

x =

⎡⎢⎣ θ11
∗T

θ21
∗T

. . .

θ1n
∗T

θ2n
∗T

⎤⎥⎦ , (26)

with θ1i
∗

= [θ1i1
∗
, . . . , θ1ipi

∗
]
T and θ2i

∗
= [θ2i1

∗
, . . . , θ2iqi

∗
]
T such that

all other elements (that are not given) of Θ∗
x are zero. Moreover,

define

f̄i(x(t)) = [fi1(x(t)), . . . , fipi (x(t))]
T

∈ Rpi ,

ḡi(x(t)) = [gi1(x(t)), . . . , giqi (x(t))]
T

∈ Rqi ,

φg (t) = [ḡT
1 (x(t)), . . . , ḡ

T
n (x(t))]

T
∈ R

∑n
i=1 qi ,

φf (t) = [f̄ T1 (x(t)), . . . , f̄ Tn (x(t))]T ∈ R
∑n

i=1 pi , (27)

φxi (t) = [f̄ Ti (x(t)), ḡT
i (x(t))u(t)]

T
∈ Rpi+qi , (28)

φx(t) = [φT
x1 (t), . . . , φ

T
xn (t)]

T
∈ R

∑n
i=1(pi+qi). (29)

Together with (1)–(2), x(t + 1) can be expressed as

x(t + 1) = Θ∗

x φx(t). (30)

Then, the output dynamics (25) can be expressed as

y(t + 2) = θ∗T
y Φf (Θ∗

x φx(t)), (31)

where Φf (Θ∗
x φx(t)) = φf (t+1), that is, Φf (x(t)) = φf (t). Note that

(31) not only contains linearly parameterized uncertainty θ∗
y , but

also contains nonlinearly parameterized uncertainty Θ∗
x .

Auxiliary parameterized signals. To estimate θ∗
y and Θ∗

x in (31),
we introduce two auxiliary signals:

v(t − 1) = θ∗T
y φf (t − 1) ∈ R, (32)

w(t − 1) = [w1(t − 1), . . . , wn(t − 1)]T = Θ∗

x φx(t − 1) ∈ Rn.(33)

Comparing (31)–(32), we see that v(t − 1) = y(t), which implies
that v(t − 1) is available. Moreover, comparing (30) and (33), we
see that w(t − 1) = x(t), which implies w(t − 1) is also available.
With the parametrizations of v(t − 1) and w(t − 1), we will use
gradient algorithms to achieve estimates of θ∗

y and Θ∗
x .

Parameter update laws. Based on the definition ofΘ∗
x in (26), we

define θ∗
xi = [θ1i

∗T
, θ2i

∗T
]
T , i = 1, 2, . . . , n. The estimation errors

are defined as

ϵ (t) = y(t) − θ T (t)φ (t − 1), (34)
y y f

6

ϵxi (t) = xi(t) − θ Txi (t)φxi (t − 1), i = 1, 2, . . . , n, (35)

where θy(t), θxi (t) are the estimates of θ∗
y , θ

∗
xi , respectively. Then,

the adaptive update laws are designed as

θy(t + 1) = θy(t) +
Γyφf (t − 1)ϵy(t)

m2
y(t − 1)

+ dy(t), (36)

xi (t + 1) = θxi (t) +
Γxiφxi (t − 1)ϵxi (t)

m2
xi (t − 1)

+ dxi (t), (37)

where Γk = diag{αk1, . . . , αkj}, k = y, xi; i = 1, 2, . . . , n; j =∑n
i pi, pi + qi, are constant gain matrices such that each diagonal

element belongs to (0, 2). Moreover,

my(t − 1) =

√
1 + φT

f (t − 1)φf (t − 1), (38)

xi (t − 1) =

√
1 + φT

xi (t − 1)φxi (t − 1); (39)

nd dv(t) and dxi (t) are modification terms which are used to
uarantee that θy(t) and θxi (t) stay in some certain regions in the
rocess of parameter adaptation.
The design of df (t) and dxi (t) has the following details. Letting

∗

yj and θ
∗

xij
be the jth components of θ∗

y and θ∗
xi , respectively, we

hoose some groups of intervals [θ ayj, θ
b
yj] and [θ axij, θ

b
xij

] such that
∗

yj ∈ [θ ayj, θ
b
yj] and θ

∗

xij
∈ [θ axij, θ

b
xij

]. Then, for

dy(t) = [dy1(t), dy2(t), . . . , dy∑n
s=1 ps (t)]

T , (40)

xi (t) = [dxi1(t), dxi2(t), . . . , dxi(pi+qi)(t)]
T , (41)

e design

kj(t) =

⎧⎨⎩
0, if θkj(t) ∈ [θ akj, θ

b
kj],

θbkj − θkj(t) − pkj(t), if θkj(t) + pkj(t) > θbkj,
θ akj − θkj(t) − pkj(t), if θkj(t) + pkj(t) < θ akj,

(42)

here k = y, xi; j = 1, 2, . . . ,
∑n

s=1 ps or pi + qi; i = 1, 2, . . . , n;

yj(t) and pxij(t) are the jth components of ϕy and ϕxi respectively,
ith ϕy(t) =

Γyφy(t−1)ϵy(t)
m2

y (t−1)
and ϕxi (t) =

Γxiφxi (t−1)ϵxi (t)

m2
xi (t−1)

. The intervals

θ ayj, θ
b
yj] and [θ axij, θ

b
xij

] for parameter projection have not been
pecified yet. Such intervals will be specified later.
The parameter estimates have the following properties:

emma 7. The parameter update laws (36)–(37) ensure (i) θy(t) ∈

∞, θxi (t) ∈ L∞, θkj(t) ∈ [θ akj, θ
b
kj]; and (ii) ϵy(t)

my(t−1) ∈ L2 ∩

L∞,
ϵxi (t)

mxi (t−1) ∈ L2 ∩ L∞, where k = y, xi; j = 1, 2, . . . ,
∑n

s=1 ps
r pi + qi; and i = 1, 2, . . . , n,

Based on a similar procedure with the proof of Lemma 3.7
n Tao (2003), one can verify that (i) and (ii) hold.

Next, we will use θy(t) and Θx(t) to estimate several future
ime signals.
stimation of y(t + 1), ϵy(t + 1), x(t + 1), dy(t + 1) and θy(t + 2).
sing θy(t), we construct an estimate of y(t + 1) as

ˆ(t + 1) = (θy(t) +
Γyφf (t − 1)ϵy(t)

m2
y(t − 1)

+ dy(t))Tφf (t). (43)
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ased on (34), we derive an estimate of ϵy(t + 1) as

ϵ̂y(t + 1) = −(θy(t) +
Γyφf (t − 1)ϵy(t)

m2
y(t − 1)

+ dy(t))Tφf (t)

+ ŷ(t + 1). (44)

Using θxi (t), we construct estimates of xi(t + 1), i = 1, . . . , n, as

x̂i(t + 1) = (θxi (t) +
Γxiφxi (t − 1)ϵxi (t)

m2
xi (t − 1)

+ dxi (t))
Tφxi (t). (45)

Define

x̂(t + 1) = [x̂1(t + 1), . . . , x̂n(t + 1)]T . (46)

Then, x̂(t + 1) is available at the current time instant. With (40)
and (42), we derive an estimate of dy(t + 1) as

d̂y(t + 1) = [d̂y1(t + 1), . . . , d̂y∑n
s=1 ps (t + 1)]T (47)

with

d̂yj(t + 1)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if θ̂yj(t + 1) ∈ [θ ayj, θ
b
yj],

θbyj − θ̂yj(t + 1)
−p̂yj(t + 1), if θ̂yj(t + 1) + p̂yj(t + 1) > θbyj,
θ ayj − θ̂yj(t + 1)−
p̂yj(t + 1), if θ̂yj(t + 1) + p̂yj(t + 1) < θ ayj,

where θ̂yj(t+1) is the jth component of θy(t)+
Γyφf (t−1)ϵy(t)

m2
y (t−1)

+dy(t),

and p̂yj(t + 1) is the jth component of ϕ̂y(t + 1) with ϕ̂y(t + 1) =
Γyφy(t)ϵ̂y(t+1)

m2
y (t)

. Now, we derive an estimate of θy(t + 2) as

ˆy(t + 2) = θy(t) +
Γyφf (t − 1)ϵy(t)

m2
y(t − 1)

+ dy(t)

+
Γyφf (t)ϵ̂y(t + 1)

m2
y(t)

+ d̂y(t + 1). (48)

o far, we have derived the signal estimates ŷ(t + 1) in (43),
ˆy(t+1) in (44), x̂(t+1) in (45)–(46), d̂y(t+1) in (47), and θ̂y(t+2)
in (48), which are all available.
Adaptive control law. In order to derive an adaptive control law,
using available signals and parameter estimates, we plan to con-
struct an implicit function equation with respect to u(t), and show
that such an equation has a unique solution which is the desired
adaptive control law. The procedure consists of three steps: (i)
construct an auxiliary signal using available signals and param-
eter estimates; (ii) specify [θ ayj, θ

b
yj] and [θ axij, θ

b
xij

] in parameter
projections of the parameter update laws; and (iii) construct an
auxiliary implicit function equation to derive a unique adaptive
control law.
Step 1: Construction of an auxiliary signal. With (46) and (48), the
auxiliary signal is specified as

h(t) = θ̂ Ty (t + 2)Φf (x̂(t + 1)) (49)

where

Φf (x̂(t + 1)) = [f̄ T1 (x̂(t + 1)), . . . , f̄ Tn (x̂(t + 1))]T . (50)

Note that h(t) is available at the current time instant. With (46)
and (48), one can verify that h(t) only depends on {θy(t), θxi (t),
x(t − 1), x(t), y(t − 1), y(t), u(t − 1), u(t)}. For convenience, let

x̄t = [xT (t − 1), xT (t)]T , ȳt = [y(t − 1), y(t)]T ,
Θt = [θ Ty (t), θ

T
x1 (t), . . . , θ

T
xn (t)]

T , ut−1 = u(t − 1).

Then, h(t) can be expressed as

h(t) = H(x̄t , ȳt ,Θt , ut−1, u(t)). (51)

For h(t), we give the following key property.
 h

7

Lemma 8. There exist constant intervals [τ ayj, τ
b
yj] and [τ axik, τ

b
xik

] such
that if θyj(t) ∈ [τ ayj, τ

b
yj] and θxij(t) ∈ [τ axij, τ

b
xij

], j = 1, 2, . . . ,
∑n

s=1 ps
or pi + qi, i = 1, 2, . . . , n, then
∂H(x̄t , ȳt ,Θt , ut−1, u(t))

∂u(t)
≥ ε0, ∀t ≥ 1. (52)

here ε0 is some positive constant.

Under Assumption 2, Lemma 8 is not difficult to obtain, so we
mit the proof for simplicity. The intervals [τ ayj, τ

b
yj] and [τ axik, τ

b
xik

]

re not unique.
tep 2: Specification of [θ ayj, θ

b
yj] and [θ axij, θ

b
xij

]. Now, based on
emma 8, we specify [θ ayj, θ

b
yj] and [θ axij, θ

b
xij

]. Thus, we need the
ollowing assumption:

ssumption 4. A group of [τ ayj, τ
b
yj], [τ

a
xi j
, τ bxi j] in Lemma 8, i = 1, . . . , n,

= 1, . . . ,
∑n

s=1 ps or pi + qi is available.

emark 9. For adaptive control of canonical-form nonlinear
ystems, to ensure the adaptive control gain being non-zero,
orresponding design conditions should be made. It commonly
ssumes that some certain intervals are known such that, if the
arameter estimates stay in such intervals, the adaptive control
ain is always non-zero. Based on this design condition, the
arameter projection is added to the parameter update laws
hich make the parameter estimates always stay in some certain

ntervals. In this paper, for adaptive control of non-canonical form
T nonlinear systems, Assumption 4 is made, which can be seen
s an extension of that for adaptive control of canonical-form
onlinear systems, and is also used for the parameter projection
esign. Lemma 8 ensures that there exist infinite intervals to
nsure that (52) holds. Although the nominal values of θ∗

y and
∗
xi , may be difficult to obtain, we can acquire some estimates
f them using parameter identification algorithms. The derived
stimates are used to construct appropriate intervals to ensure
hat (52) holds. Thus, Assumption 4 is reasonable. The simulation
tudy will illustrate that how to verify Assumption 4 in detail. □

emark 10. If the system input has enough frequencies so as to
ake φf (t) and φxi (t) to be persistently exciting, then Assump-

ion 4 is not needed. This is because, under a persistently exciting
ondition, the parameter estimates can converge to their nominal
alues. However, the persistently exciting condition is much more
estrictive than Assumption 4. □

Under Assumption 4, [θ ayj, θ
b
yj] and [θ axij, θ

b
xij

] in dj(t) are deter-
ined as [τ ayj, τ

b
yj] and [τ axij, τ

b
xij

], respectively, based on which the
daptive update laws (36)–(37) ensure that (52) always holds.
tep 3: Derivation of an adaptive control law. Using (51), at each
ime t ≥ 1, we construct the following equation with respect to
(t) of the form

(x̄t , ȳt ,Θt , ut−1, u(t)) − ym(t + 2) = 0. (53)

o ensure that (53) is a well-defined implicit function equa-
ion with respect to u(t), the reference output signal ym(t + 2)
eeds to satisfy that ym(t + 2) belongs to the range of H(x̄t , ȳt ,
t , ut−1, u(t)) for each t ≥ 1.
The following lemma specifies a key property of (53).

emma 11. At each time t ≥ 1, there exists a unique solution to
53) with respect to u(t).

roof. 1 From (52), for all u ∈ R, under Assumption 4, Lemma 8
mplies that there exists a bounded signal denoted as κ(t) such

1 To reduce the notation of this paper, this proof uses some notation which
ave been used in the proof of Theorem 1.
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hat

(t) = inf
u∈R

{
∂H(x̄t , ȳt ,Θt , ut−1, u)

∂u

}
> 0. (54)

et c(t) = H(x̄t , ȳt , ut−1,Θt , u)|u=0−ym(t + 2). If c(t) = 0, then
u = 0 is the solution. Otherwise, consider a compact set defined
as

Ωt = {u||u| ≤ |c(t)|/κ(t)}. (55)

ince ∂H(x̄t ,ȳt ,Θt ,ut−1,u)
∂u is continuous on Ωt with respect to u, we

btain ∂H(x̄t ,ȳt ,Θt ,ut−1,u)
∂u has a maximum value for all u ∈ Ωt . Thus,

t each time t , for all u ∈ Ωt , fixing other signals, there exists a
bounded signal denoted as κ̄(t) such that

κ̄(t) = max
u∈Ωt

{
∂H(x̄t , ȳt ,Θt , ut−1, u)

∂u

}
> 0.

hen, we introduce a mapping: ft : Ωt → R defined as

ft (u) = u −
1
γ (t)

(H(x̄t , ȳt ,Θt , ut−1, u) − ym(t + 2)), (56)

where γ (t) is a design parameter depending on t such that
γ (t) > κ̄(t). Then, following a procedure similar to the proof of
Theorem 5, we have that ft is a contraction mapping, and there
exists a unique solution u to (53). ∇

The solution u to (53) is denoted as u∗
t . One can verify that u∗

t
t most depends on x̄t , ȳt , Θt , ut−1, ym(t + 2). Thus, u∗

t can be
expressed as

u∗

t = Hu(x̄t , ȳt ,Θt , ut−1, ym(t + 2)), (57)

where Hu is a nonlinear function. All parameters and signals in
(53) are known, in the sense that Eq. (53) is solvable. With c
denoting a generic signal bound, we give the following result.

Lemma 12. The adaptive control law (57) ensures H(x̄t , ȳt ,Θt ,

ut−1, u∗
t ) − ym(t + 2) = 0 for all t ≥ 1 and satisfies |u∗

t | ≤

c∥x(t)∥ + c.

Proof. In the proof of Lemma 11, we have shown that u∗
t is the

unique solution to Eq. (53). Thus, the equation H(x̄t , ȳt ,Θt , ut−1,

u∗
t )− ym(t +2) = 0 always holds for all t ≥ 1. On the other hand,

the mapping ft defined in (56) always maps u into Ωt defined in
(55). Thus, u∗

∈ Ωt . With c(t) = H(x̄t , ȳt ,Θt , ut−1, u)|u=0−ym(t +

2) and the fact that κ(t) is away from zero, we have |u∗
t | ≤

|H(x̄t , ȳt ,Θt , ut−1, 0)| + c, where c denotes a generic signal
ound. From (49) and (51), we have

u∗

t | ≤ c|θ̂ Ty (t + 2)Φf (x̂(t + 1))|u(t)=0| + c. (58)

rom the structures of θ̂y(t+2) and x̂(t+1) in (45) and (48)–(46),
espectively, we derive that θ̂ Ty (t+2) ∈ L∞ and ∥x̂(t+1)|u(t)=0∥ ≤

∥φx(t)|u(t)=0∥. With φf (t) and φx(t) in (27) and (29), we obtain
φx(t)|u(t)=0∥ = ∥φf (t)∥. Hence, ∥x̂(t + 1)|u(t)=0∥ ≤ c∥φf (t)∥.
ogether with (58) and θ̂ Ty (t +2) ∈ L∞, under Assumption 3(a), it
s straightforward to obtain |u∗

t | ≤ c∥x(t)∥ + c . ∇

tability and output tracking analysis. Now, we give the main
esult of this paper.

heorem 13. Under Assumptions 1–4, the adaptive control law (57)
ith the parameter update laws (36)–(37), applied to the system
1) with ρ = 2 and unknown C, θ1ij

∗, θ2ij
∗
, j = 1, 2, . . . , pi(qi),

= 1, 2, . . . , n, ensures closed-loop stability and asymptotic output
racking: limt→∞(y(t) − ym(t)) = 0.
 t

8

roof. To simplify the notation, we always let u(t) = u∗
t in

he followings. With Lemma 12, φf (t + 1) = Φf (x(t + 1)),
H(x̄t , ȳt ,Θt , ut−1, u∗

t ) = θ̂ Ty (t + 2)Φf (x̂(t + 1)), and y(t + 2) =

θ∗T
y φf (t + 1), we have

e(t + 2) = y(t + 2) − ym(t + 2)
= θ∗T

y φf (t + 1) − θ̂ Ty (t + 2)Φf (x̂(t + 1))

= θ Ty (t + 2)Φf (x̂(t + 1)) − θ̂ Ty (t + 2)Φf (x̂(t + 1))

+ θ Ty (t + 2)Φf (x(t + 1)) − θ Ty (t + 2)Φf (x̂(t + 1))

+ ϵy(t + 2). (59)

With (34), (43), (44) and (48), we have

∥θy(t + 2) − θ̂y(t + 2)∥

≤ c
|ϵy(t + 1) − ϵ̂y(t + 1)|

my(t)
= c

|y(t + 1) − ŷ(t + 1)|
my(t)

= c
|θ∗T

y φf (t) − θ Ty (t + 1)φf (t)|

my(t)
=

c|ϵy(t + 1)|
my(t)

,

here c denotes a generic signal bound. With the definition of Φf
n (50), under Assumption 3, Φf is globally Lipschitz. Thus, with
f (0) = 0, we have

Φf (x̂(t + 1))∥ ≤ c∥x̂(t + 1)∥ ≤ c∥φx(t)∥. (60)

ith (35) and (45)–(46), we derive ∥Φf (x(t+1))−Φf (x̂(t+1))∥ ≤

∥x(t + 1) − x̂(t + 1)∥ ≤ c∥ϵx(t + 1)∥, where ϵx(t + 1) =

ϵx1 (t + 1), . . . , ϵxn (t + 1)]T . From (28), (35), together with the
ystem model (1), we get

φx(t)∥ ≤ c∥φf (t)∥ + c∥φg (t)∥∥u∗

t ∥. (61)

nder Assumption 3, we see that ∥φf (t)∥ ≤ c∥x(t)∥ and ∥φg (t)∥ ∈
∞. Thus, based on Lemma 12, (61) implies ∥φx(t)∥ ≤ c∥x(t)∥+c.
ith (39) and (60), we obtain

xi (t) ≤ c∥x(t)∥ + c, ∥Φf (x̂(t + 1))∥ ≤ c∥x(t)∥ + c.

rom (38), we get

f (t + 1) ≤ c∥φf (x(t + 1))∥ + c ≤ c∥x(t + 1)∥ + c
≤ c∥φx(t)∥ + c ≤ c∥x(t)∥ + c.

rom the diffeomorphism T (x) = [ξ T , ηT ]T , we have ∥x(t)∥ ≤

∥ξ (t)∥ + c∥η(t)∥ with ξ (t) = [y(t), y(t + 1)]T . Under Assump-
ion 1, we derive that ∥η(t)∥ ≤ c∥ξ (t)∥ + c . Therefore, with
(t) = y(t) − ym(t), ξ (t) = [y(t), y(t + 1)]T and ym(t) ∈ L∞, we
erive that

x(t)∥ ≤ c∥ξ (t)∥ + c ≤ c max
i=0,1

|e(t + i)| + c.

ith the above derivations, (59) implies that

e(t + 2)| ≤
c|ϵy(t + 1)|

my(t)
∥φx(t)∥ + c

∥ϵx(t + 1)∥
∥mx(t)∥

∥mx(t)∥

+
|ϵy(t + 2)|
mf (t + 1)

mf (t + 1), (62)

here mx(t) = [mx1 (t), . . . ,mxn (t)]
T . From Lemma 7, we ob-

ain that the signals |ϵy(t+1)|
my(t)

, ∥ϵx(t+1)∥
∥mx(t)∥

, |ϵy(t+2)|
mf (t+1) all decay to zero

asymptotically.
Hence, letting µ(t) denote a generic asymptotically decaying

signal, we have |e(t + 2)| ≤ µ(t)maxi=0,1 |e(t + i)| + µ(t) + c
which implies that e(t) ∈ L∞. Thus, y(t) ∈ L∞ and y(t + 1) ∈ L∞,
hich further implies ξ (t) = [y(t), y(t + 1)]T ∈ L∞. Under
ssumption 1, we obtain η(t) ∈ L∞.
Then, based on the diffeomorphism T (x) = [ξ T , ηT ]T , it follows

hat x(t) ∈ L∞. Based on Lemma 12, we derive u(t) ∈ L∞. So far,
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ll closed-loop signals are bounded. Thus, φx(t), mx(t) and mf (t +

) are all bounded. From (62), we conclude that limt→∞ e(t) = 0.
∇

Theorem 13 provides a fundamental adaptive control method
for the system (1) with relative degree two which successfully
solves the technical problems of nonlinear parametrization and
non-affine control input.

5.3. Iterative solution based adaptive control design

In some cases, Eq. (53) may be too complicated to get an
analytical solution. Alternatively, we will develop an iterative
solution based adaptive control law.
Iterative controller structure. The iterative adaptive law is de-
signed as

ui(t) = ui−1(t) −
H(x̄t , ȳt ,Θt , ut−1, ui−1(t)) − ym(t + 2)

γ (t)
, (63)

where u0(t) = ut−1 is the control signal at the time instant t − 1
and γ (t) has been clarified below (56).

For the control law (63), we give the following result.

Theorem 14. Under Assumptions 1–4, for all t ≥ 1, {ui(t)} in (63) is
convergent, i.e., limi→∞ ui(t) = u∗

t , where u∗
t is the unique solution

to (53).

Proof. Based on (54), (56), and (63), we derive that

|um+1(t) − un+1(t)| ≤

(
1 −

κ(t)
γ (t)

)
|um(t) − un(t)|, (64)

m, n ∈ {0, 1, 2, . . .}. Using Cauchy Convergence Criterion, it
follows from (64) that {ui(t)} is convergent. Then, letting i → ∞

of the two sides of (63), we have u∗
t = u∗

t −H(x̄t , ȳt ,Θt , ut−1, u∗
t )−

ym(t + 2)/γ (t), that is, H(x̄t , ȳt ,Θt , ut−1, u∗
t ) − ym(t + 2) = 0.

Together with Lemma 11, u∗
t is the unique solution to (53). ∇

Since u∗
t is a limitation, it is often not achievable. To implement

the iterative control method, we choose up(t)(t) generated by
p(t) iterations of {ui(t)} defined in (63) as the adaptive law to
guarantee

|y(t + 2) − ym(t + 2)| ≤ ϵ + δ, ∀t ≥ 1, (65)

where ϵ is a given admissible error and δ is an asymptotically
decaying signal. Now, we give the following result.

Theorem 15. Under Assumptions 1–4, the adaptive law up(t)(t) with
the update laws (36)–(37), applied to the system (1) with ρ = 2 and
unknown C, θ1ij

∗, θ2ij
∗
, i = 1, 2, . . . , n, j = 1, 2, . . . , pi(qi), ensures

closed-loop stability and (65) if p(t) = 0 for the case of u1(t) = u0(t)
or

p(t) ≥ log γ (t)−κ(t)
γ (t)

κ(t)ϵ
2γ (t)κ̄(t)|u1(t) − u0(t)|

for the case of u1(t) ̸= u0(t).

Proof. If u1(t) = u0(t), from (63), we see that

H(x̄t , ȳt ,Θt , ut−1, u0(t)) − ym(t + 2) = 0

which implies u0(t) is the desired control signal at the time t . Oth-
erwise, from (64), by induction, it yields |up(t)+1(t) − up(t)(t)| ≤

(1 −
κ(t)
γ (t) )

p(t)
|u1(t) − u0(t)|. Then,

|up(t)+q(t)(t) − up(t)(t)|

≤
γ (t)
κ(t)

(
1 −

κ(t)
γ (t)

)p(t)
(
1 −

(
1 −

κ(t)
γ (t)

)q(t)
)

|u1(t) − u0(t)|.
9

etting q(t) → ∞ yields

u∗

t − up(t)(t)| =
γ (t)
κ(t)

(
1 −

κ(t)
γ (t)

)p(t)

|u1(t) − u0(t)|.

ith H(x̄t , ȳt ,Θt , ut−1, u∗
t ) − ym(t + 2) = 0, applying the Mean

alue Theorem to it yields

|H(x̄t , ȳt ,Θt , ut−1, up(t)(t)) − ym(t + 2)|⏐⏐⏐⏐∂H(x̄t , ȳt ,Θt , ut−1, up(t)(t))
∂up(t)(t)

|up(t)(t)=ψ0

⏐⏐⏐⏐ · |up(t)(t) − u∗

t |

κ̄(t)|up(t)(t) − u∗

t |,

here ψ0 is some value between up(t)(t) and u∗
t . Then,

|H(x̄t , ȳt ,Θt , ut−1, up(t)(t)) − ym(t + 2)|(
1 −

κ(t)
γ (t)

)p(t)
γ (t)κ̄(t)|u1(t) − u0(t)|

κ(t)
.

Now, let
(
1 −

κ(t)
γ (t)

)p(t)
γ (t)κ̄(t)|u1(t)−u0(t)|

κ(t) ≤
1
2ϵ, then

p(t) ≥ log γ (t)−κ(t)
γ (t)

κ(t)ϵ
2γ (t)κ̄(t)|u1(t) − u0(t)|

. (66)

Thus, as long as (66) holds, |H(x̄t , ȳt ,Θt , ut−1, up(t)(t)) − ym
t + 2)|≤ 1

2ϵ. Moreover,

|y(t + 2) − ym(t + 2)|
|y(t + 2) − H(x̄t , ȳt ,Θt , ut−1, u∗

t )|
+ 2|H(x̄t , ȳt ,Θt , ut−1, up(t)(t)) − ym(t + 2)|.

ince limt→∞(y(t + 2) − H(x̄t , ȳt ,Θt , ut−1, u∗
t )) = 0, we see that

65) holds. Following a similar procedure with that in the proof of
heorem 13, we derive that all closed-loop signals are bounded.

Theorem 15 provides a constructive method to implement the
terative solution based adaptive control law.

.4. Extension to higher-order relative degree case

Now, we show that the proposed method for the ρ = 2 case
an be extended to any higher-order relative degree case. Since it
s quite complicated to analytically describe the general case, we
emonstrate the ρ = 3 case to verify the above point of view.
For the system (1) with ρ = 3, y(t + 2) no longer depends on

(t). Thus, from (31), y(t + 2) can be expressed as

(t + 2) = θ∗T
y Φf (Θ∗

x φx0(t)),

here φx0(t) = [φT
x10

(t), . . . , φT
xn0(t)]

T
∈ R

∑n
i=1(pi+qi) with φxi0(t)

[f̄ Ti (x(t)), ḡT
i (x(t)) ·0]

T
∈ Rpi+qi . Then, y(t +3) can be expressed

s

(t + 3) = θ∗T
y Φf (Θ∗

x φx0(t + 1)) = θ∗T
y Φf (Θ∗

x φx0(Θ∗

x φx(t)))

uch that θ∗T
y

∂Φf (Θ∗
x φx0(t+1))

∂φx0(t+1)
∂φx0(t+1)
∂x(t+1) g(x(t)) ≥ ε > 0.

Similar to the relative degree two case, the following implicit
unction equation should be constructed:

ˆ T
y (t + 3)Φf (Θ̂x(t + 2)φx0(Θ̂x(t + 1)φx(t))) − ym(t + 3) = 0. (67)

o acquire (67), with ŷ(t+1), ϵ̂y(t+1), x̂(t+1), d̂y(t+1), θ̂y(t+2)
pecified for the relative degree two case, we need to further
pecify θ̂y(t + 3), Θ̂x(t + 2). From (48), θ̂y(t + 3) is derived as

ˆy(t + 3) = θy(t) +
Γyφf (t − 1)ϵy(t)

m2
y(t − 1)

+ dy(t)

+
Γyφf (t)ϵ̂y(t + 1)

2 + d̂y(t + 1)

my(t)
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+
Γyφ̂f (t + 1)ϵ̂y(t + 2)

m̂2
y(t + 1)

+ d̂y(t + 2), (68)

here φ̂f (t+1) = [f̄ T1 (x̂(t+1)), . . . , f̄ Tn (x̂(t+1))]T and m̂y(t+1) =

1 + φ̂T
f (t + 1)φ̂f (t + 1). In the right side of (68), only ϵ̂y(t + 2)

nd d̂y(t+2) are yet to be specified. Moreover, as long as ϵ̂y(t+2)
s specified, d̂y(t + 2) is easy to be derived. To obtain ϵ̂y(t + 2),
rom (44), we only need to specify ŷ(t + 2). From (43), ŷ(t + 2) is
pecified as

ˆ(t + 2) = (θy(t + 1) +
Γyφf (t)ϵ̂y(t + 1)

m2
y(t)

+ d̂y(t + 1))T φ̂f (t + 1)

ith θy(t + 1) = θy(t) +
Γyφf (t−1)ϵy(t)

m2
y (t−1)

+ dy(t). Following a similar

way, one can also specify Θ̂x(t + 2). Then, the implicit function
equation (67) can be specifically constructed. Finally, a unique
adaptive control law can be derived from (67), which can en-
sure closed-loop stability and asymptotic output tracking for the
system (1) with ρ = 3. Here, we do not provide the details.

So far, several adaptive control methods for the system (1)
with relative degree one and two have been developed. In partic-
ular, some extensions of the proposed adaptive control methods
are given.

6. Simulation study

An illustrative example is given to show the control design
procedure and verify the effectiveness.

6.1. Simulation model

We consider the following system model

x1(t + 1) = 1.3x1(t) + 1.2 sin x1(t) cos x3(t)
+ (2 + 2 sin2(x1(t)))u(t),

x2(t + 1) = 1.2x2(t) + 1.5 arctan x1(t) + 1.3 sin x3(t),
x3(t + 1) = 0.5x3(t) + 1.6 sin x2(t), (69)

where xi ∈ R, i = 1, 2, 3, are three state variables, u ∈ R is the
system input, and the system output is y(t) = x2(t). This model
is parameterized as

x(t + 1) = Θ∗

f φf (t) +Θ∗

g φg (t)u(t), y(t) = Cx(t), (70)

where Θ∗
g = diag{θ∗

g1, 0, 0} ∈ R3×3 with θ∗

g1 = 2, Θ∗

f =

diag{θ∗T
f 1 , θ

∗T
f 2 , θ

∗T
f 3 } ∈ R3×7,

φf (t) = [x1(t), sin x1(t) cos x3(t), x2(t), arctan x1(t),
sin x3(t), x3(t), sin x2(t)]T ∈ R7,

φg (t) = [1 + sin2(x1(t)), 0, 0]T ∈ R3, (71)

θ∗

f 1 = [1.3, 1.2]T , θ∗

f 2 = [1.2, 1.5, 1.3]T , θ∗

f 3 = [0.5, 1.6]T , and
C = [0, 1, 0]. In this simulation, we assume that Θ∗

f , Θ
∗
g , C are

unknown, and φf (t), φg (t) are known.

6.2. Verification of the assumptions

From (69) and (70), we derive

y(t + 2) = 1.44x2(t) + 1.8 arctan x1(t) + 1.56 sin x3(t)
+ 1.5 arctan (1.3x1(t) + 1.2 sin x1(t) cos x3(t)
+ (2 + 2 sin2(x1(t)))u(t)

)

+ 1.3 sin(0.5x3(t) + 1.6 sin x2(t)) d

10
which implies that y(t+2) contains both linearly and nonlinearly
parameterized uncertainties, and nonlinearly depends on u(t).
Let θ∗

f 21 denote the first element of θ∗

f 2, then the relative degree
condition can be verified from

∂y(t + 2)
∂x(t + 1)

·
∂x(t + 1)
∂u(t)

=
θ∗

f 21θ
∗

g1(1 + sin2(x1(t)))

1 + sin2(x1(t + 1))
(72)

which is always non-zero for all (x, u) ∈ R3
× R.

Thus, the model (69) has relative degree 2, based on which
we choose the state transformation as T (x) = [x2, 1.2x2 +

1.5 arctan x1 + 1.3 sin x3, x3]T . One can readily verify that T (x)
is smooth with respect to x and the Jacobian matrix ∂T (x)

∂x is
onsingular for all x ∈ R3. Therefore, T (x) is a diffeomorphism,
nd the internal dynamics is x3(t + 1) = 0.5x3(t) + 1.6 sin x2(t).
ince x3(t + 1) = 0.5x3(t) decays to zero exponentially and
.6 sin x2 is Lipschitz with respect to x2, the internal dynamics is
SS with respect to x2 as the input. Thus, Assumption 1 is satisfied.
t follows from (72) that Assumption 2 is also satisfied. From the
tructure of the model (69), Assumption 3 is satisfied.
We deduce from (72) that, in the process of parameter adapta-

ion, the relative degree two condition can be verified by judging
hether θf 21(t)θg1(t)(1+x21(t))

1+x21(t+1)
is zero or not, where θf 21(t) and θg1(t)

are the estimates of θ∗

f 21 and θ∗

g1, respectively. As long as θf 21(t)
nd θg1(t) are non-zero, the relative degree two condition always
olds. Thus, only two intervals associated with θ∗

f 21 and θ∗

g1 need
o be chosen for the parameter projection design, in the sense
hat Assumption 4 is easy to be satisfied.

.3. Construction of an auxiliary function

Before deriving the adaptive control law, we first need to
onstruct Eq. (53), for which we only need to specify θ̂ Ty (t +

)Φf (x̂(t+1)). Now, with φf (t) and φg (t) in (71), we further define

(t − 1) = θ∗T
y φf (t − 1), w(t − 1) = Θ∗

x φx(t − 1),
∗

y = [0, 0, 1.2, 1.5, 1.3, 0, 0]T , θ∗

x1 = [1.3, 1.2, 2]T ,
∗

x2 = [1.2, 1.5, 1.3, 0]T , θ∗

x3 = [0.5, 1.6, 0]T ,

x1 (t) = [x1(t), sin x1(t) cos x3(t), x2(t), (1 + sin2(x1(t)))u(t)]
T
,

x2 (t) = [x2(t), arctan x1(t), sin x3(t), 0]T ,

x3 (t) = [x3(t), sin x2(t), 0]T .

Let θy(t) and θxi (t) be the estimates of θ∗
y and θ∗

xi , respectively.
Then, ϵy, ϵxi can be specified based on (34) and (35). After that,
the parameter update laws for θy(t) and θxi (t) can be specified
ased on (36)–(37). In particular, under Assumption 4, we can
hoose the intervals [τ ayj, τ

b
yj] and [τ axij, τ

b
xij

] for the parameter pro-
ection design. Based on the clarification in the paragraph above
ection 6.3, we only need to specify [τ ay3, τ

b
y3] and [τ ax14, τ

b
x14

],
nd other intervals can be chosen arbitrarily. Here, [τ ay3, τ

b
y3] and

τ ax13, τ
b
x13

] are chosen as [0.5, 2] and [1, 3], respectively. So far,
he parameter update laws can be completely specified, based
n which θ̂ Ty (t + 2)Φf (x̂(t + 1)) can also be specified. Finally, the
mplicit function equation (53) can be specified.

.4. Simulation results

Based on the structure of system nonlinearities, it is not easy
o get an analytical solution u(t) from θ̂ Ty (t + 2)Φf (x̂(t + 1)) =

m(t + 2). In this case, by Theorem 15, we use the iteration
olution up(t)(t) as the adaptive law. Note that such an control
aw ensures bounded output tracking. The admissible error ϵ in
65) is chosen as 0.001. Two reference output signals are given to
emonstrate the closed-loop stability and tracking performance:
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Fig. 1. System output y vs. reference output ym (Case I).

Fig. 2. Control input u and system state x (Case I).

Fig. 3. Adaptation of parameters of θy and θx1 (Case I).

one is a constant signal ym = 1.5; and the other is a time-varying
signal ym(t) = 2 + 0.3 sin(0.5t) + 0.2 cos(0.4t).

For Case I, Fig. 1 shows the output response versus the con-
stant reference output. Fig. 2 demonstrates the input and state
response. Fig. 3 presents the parameter adaptation response (due
to space limit, only four parameter estimates are given). For Case
II, Fig. 4 shows the output response versus the time-varying ref-
erence output. Fig. 5 demonstrates the input and state response.
 v

11
Fig. 4. System output y vs. reference output ym (Case II).

Fig. 5. Control input u and system state x (Case II).

Fig. 6. Adaptation of parameters of θy and θx1 (Case II).

ig. 6 presents the parameter adaptation response (due to space
imit, we also give four parameter estimates).

Based on the simulation results, one can see that the system
utput tracks the reference output signal within the prescribed
rror ϵ (if an analytical adaptive law u∗

t is specified from the
quation θ̂ Ty (t + 2)Φf (x̂(t + 1)) = ym(t + 2), asymptotic tracking
an be obtained), and the closed-loop signals are all bounded. As
llustrated in Figs. 3 and 6, the parameter estimates may not con-
erge to their nominal values (the proposed control method does
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ot depend on the persistently exciting condition, and thus, the
arameter estimates generally do not converge to their nominal
alues). However, the desired system performance is achieved.

. Concluding remarks

This paper established an adaptive state feedback output
racking control framework for non-canonical form DT nonlinear
ystems with parametric uncertainties, where several adaptive
ontrol methods have been developed based on an implicit func-
ion based formulation. Specifically, an adaptive parametric re-
onstruction based method was proposed to effectively deal with
ll unknown parameters in the output dynamics, and an implicit
unction equation was constructed to solve the non-affine control
nput issue, based on which a unique adaptive control law was
erived for the controlled plant to ensure desired system perfor-
ance. In addition, an iterative solution based adaptive control

aw was also developed, which provides an alternative method
hen the analytical adaptive law is difficult to obtain. This paper

s the first to systematically address the adaptive control problem
f non-canonical form DT nonlinear systems with uncertainties.
uture work is needed to address the applications of the proposed
daptive control methods.
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